"Translation can't change a name": Using Multilingual Data for Named Entity Recognition
نویسنده
چکیده
Named Entities (NEs) are often written with no orthographic changes across different languages that share a common alphabet. We show that this can be leveraged so as to improve named entity recognition (NER) by using unsupervised word clusters from secondary languages as features in state-of-the-art discriminative NER systems. We observe significant increases in performance, finding that person and location identification is particularly improved, and that phylogenetically close languages provide more valuable features than more distant languages.
منابع مشابه
A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملتشخیص اسامی اشخاص با استفاده از تزریق کلمههای نامزد اسم در میدانهای تصادفی شرطی برای زبان عربی
Named Entity Recognition and Extraction are very important tasks for discovering proper names including persons, locations, date, and time, inside electronic textual resources. Accurate named entity recognition system is an essential utility to resolve fundamental problems in question answering systems, summary extraction, information retrieval and extraction, machine translation, video interpr...
متن کاملBuilding a Multilingual Named Entity-Annotated Corpus Using Annotation Projection
As developers of a highly multilingual named entity recognition (NER) system, we face an evaluation resource bottleneck problem: we need evaluation data in many languages, the annotation should not be too time-consuming, and the evaluation results across languages should be comparable. We solve the problem by automatically annotating the English version of a multi-parallel corpus and by project...
متن کاملTranslating-transliterating named entities for multilingual information access
monolingual named entities. Extending them to multilingual entities is becoming important because a large amount of multilingual materials are generated and disseminated over the Web. The fundamental issues in processing multilingual named entities are recognizing them and finding their correspondence. Embedded technologies include learning formulation and transformation rules for multilingual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1405.0701 شماره
صفحات -
تاریخ انتشار 2014